回到天堂

 找回密码
 立即注册

扫一扫,访问微社区

QQ登录

只需一步,快速开始

搜索
热搜: 活动 交友 discuz
查看: 7127|回复: 0

测度论

[复制链接]

113

主题

137

帖子

1166

积分

管理员

Rank: 9Rank: 9Rank: 9

积分
1166
发表于 2016-11-22 12:52:59 | 显示全部楼层 |阅读模式
测度论
测度论是研究一般集合上的测度和积分的理论。它是勒贝格测度和勒贝格积分理论的进一步抽象和发展,又称为抽象测度论或抽象积分论,是现代分析数学中重要工具之一。 测度理论是实变函数论的基础。


中文名测度论外文名measure theory
目录



定义
测度理论是实变函数论的基础。所谓测度,通俗的讲就是测量几何区域的尺度。 我们知道直线上的闭区间的测度就是通常的线段长度; 平面上一个闭圆盘的测度就是它的面积。

形成意义


定理的形成
纵观勒贝格积分和勒贝格-斯蒂尔杰斯积分理论,不难发现它们都有三个基本要测度论
素。
第一,一个基本空间(即n维欧几里得空间R)以及这个空间的某些子集构成的集类即L(勒贝格)可测集或某L-S(勒贝格-斯蒂尔杰斯)可测集全体,这个集类对集的代数运算和极限运算封闭。
第二,一个与这个集类有关的函数类(即L可测函数或某L-S可测函数全体)。
第三,一个与上述集类有关的测度(即L测度或某L-S测度)。
在三个要素的基础上,它们都是运用完全类似的定义和推理过程获得完全类似的一整套测度、可测函数、积分的定理(见勒贝格积分贝尔函数)。测度论正是基于这些基本共同点所形成一般理论。

意义
对于更一般的集合,我们能不能定义测度呢? 比如直线上所有有理数构成的集合,它的测度怎么衡量呢?
一个简单的办法, 就是先在每个有理点上找一个开区间覆盖它,就好比给它带个“帽子”。因为有理数集是可列集(就是可以像排自然一样排好队,一个个数出来,也叫可数集,见集合论),所以我们可以让第n个有理数上盖的开区间长度是第一个有理数(比方是1)上盖的开区间长度的2^n分之一。 这样所有那些开区间的长度之和是个有限值(就是1上的开区间长度的2倍)。
测度论
我们让1上的开区间逐渐缩小趋向于一个点,那么所有区间的总长度也相应缩小,趋向于长度0。 这样我们就说有理数集的测度是0。 用上面这种方法定义的测度也叫外测度。
一个几何区域有了测度,我们就可以定义上面的函数的积分,这是推广的黎曼积分
比如实数上的狄利克雷函数D(x)=1(如果x是有理数),0(如果x是无理数)。 如果按照通常的理解,我们发现狄利克雷函数在整个数轴上的定积分不存在;但是按照上面讲的有理数的测度,我们就可以求出它的定积分是0。
实直线上的测度如下给出:
设E是实数集,考虑可数个区间(aj,bj)满足对任何x∈E,都有某个j,使得x∈(aj,bj);考虑所有情形下和(b1-a1)+(b2-a2)+..的下确界称为E的外测度
如果对任何集合F都有E∩F和F\E的外测度之和等于F的外测度,称E可测,定义其测度等于外测度
直观含义上面已经解释过了

数学定义
测度的相关数学定义:
集函数:设Ψ是上的非空集合类。若对于每一个A∈Ψ,都有一个实数或者±∞之一与之对应(为确定起见,下面假定只取+∞),记为φ(A),且至少有一个A∈Ψ,使得φ(A)取有限值,称φ(A)为定义在Ψ上的集函数。
(1)若对任意的正整数n以及任意的Ai∈Ψ,i=1,2……,n,Ai∩Aj=Ø(i≠j),且(A1∪A2∪…Ai∪…An)∈Ψ,有
φ(A1∪A2∪…Ai∪…An)=∑[φ(A1)∪φ(A2)∪…φ(Ai)∪…φ(An)],
则称φ在Ψ上具有有限可加性,也称φ是Ψ上的有限可加集函数。
(2)若对可列集的Ai∈Ψ,i=1,2……,n,Ai∩Aj=Ø(i≠j),且(A1∪A2∪…Ai∪…A∞)∈Ψ,有
φ(A1∪A2∪…Ai∪…A∞)=∑[φ(A1)∪φ(A2)∪…φ(Ai)∪…φ(A∞)],
则称φ在Ψ上具有完全可加性或者б-可加性,也称φ是Ψ上的б-可加集函数或者广义测度。
(3)若对每一个A∈Ψ,φ(A)都取有限值,则称φ为上的有限集函数。如果对每一个A∈Ψ,存在一个集合序列⊂Ψ,使得
A⊂(A1∪A2∪…Ai∪…A∞),φ(An)<+∞,n=1,2,……
则称φ是Ψ上的б-有限集函数。
(4)若集函数为有限可加且只取非负值则称为有限可加测度。若集函数为б-可加,且只取非负值,则称为测度,用μ或ν表示。具有性质Ω∈Ψ且ν(Ω)=1的测度,称为概率测度或者简称概率,一般用P表示。

相关定理

此外,测度还可以取值于任何线性空间(通常带有一定拓扑,比如Banach空间),只要满足相应的可数可加性。在Hilbert空间算子理论中还有所谓谱测度的概念,其中测度的取值为一固定Hilbert空间中投影算子的全体,且满足(在强意义下)的可数可加性。
如果测度空间X是拓扑空间而所考虑的б代数(或者б环,后者按照Halmos《Measure Theory》)由全体紧集生成(这定义不是标准的;有的书上说是由全体开集生成),且测度在每个紧集上取有限值,则称为Borel测度。如果Borel测度限制在所有能写成可数个开集的交的紧集生成的б环上,则称为Baire测度。如果任何可测集E满足
μ(E)=sup{μ(K): K含于E,K紧}=inf{μ(O):O包含E,O开}
则称μ为正则测度。
Riesz-Markov表示定理:设X为局部紧T2空间,则对Cc(X)(即X上有紧支集的连续函数全体)上任何正线性泛函φ,存在正则Borel测度μ使得对任何f,φ(f)等于f关于μ的积分。

环和σ代数
设X是非空的集。E是以Χ的某些子集作为元素构成的集,称E为Χ上的一个集类。设R是Χ上的一个集类。如果它对集的并、差运算封闭,即对任何A、B∈R,必有A∪B∈R,A\B∈R,则称R为Χ上的环;如果R不仅是一个环,而且Χ∈R,则称R为Χ上的代数。例如直线R1上的左开右闭的有限区间(α,b](α=b时,(α,b]表示空集)的全体记为P,P便是R1上的集类,但不是环。P中任意有限个集的并的全体记为R0,R0便是R1上的环,但不是代数。直线上任意有限个区间(包括无限区间)的并的全体R奿是R1上的代数。环或代数虽对集的代数运算(即并、差、交运算)封闭,但对极限运算不一定封闭,这就不适应分析数学的要求。因此,需要引入下面的概念:设φ)是Χ上的一个环,如果它对集的可列并运算封闭,则称φ)为Χ上的σ环;如果φ)是σ环,并且Χ∈φ),则称φ)为Χ上的σ代数。σ环就对集的并、差、交以及极限运算都封闭,而σ代数还对集的求余集运算封闭。例如,R0,R奿,都不是R1上的σ环,而L可测集(或L-S可测集)的全体是R1上的σ代数。又如Χ的一切子集的全体Χ是Χ上的σ代数。由于任意个环的交仍是环,因此对一个集类E,一切包含E的环的交是包含E的最小环,记为R(E)。同样,包含E的最小σ环记为φ)(E)。

空间函数
设φ)是Χ 上的σ环,称(Χ,φ)为可测空间,而称φ中的任何集A为(Χ,φ)中的可测集(也称为Χ中的φ可测集)。如果Χ是Rn,而φ分别是Rn中 L可测集全体(记为L)、由单调增加右连续函数g(x)生成的L-S可测集全体(记为 Lg)、波莱尔集全体(记为B),则相应地称(Χ,φ)是L可测空间、L-S可测空间、波莱尔可测空间。设E是可测空间(Χ,φ))中的可测集,ƒ是定义在E上的有限实值函数。如果对任何实数с,{Χ│ƒ(x)>с}∈φ,那么称ƒ为E上关于(Χ,φ)的可测函数,也称为E上的φ)可测函数。这种可测函数是L可测函数、L-S可测函数等概念的直接推广。它有许多等价定义方式,并且具有L可测涵数所具有的代数性质及极限性质。定义在E上的复值函数ƒ,如果它的实部、虚部都是可测函数,那么就称ƒ为E上的可测函数。可测空间、可测集、以及可测函数等概念原则上并不涉及测度。

测度空间
设Χ是非空集,E是Χ上的集类,定义在E上的函数称为集函数(因为自变元是属于E,它是Χ的子集式①
)。设R是Χ上的环,μ是定义在R上的取非负的广义实值(可以取值+∞)的集函数,如果满足:①μ(═)=0(═是空集);②(可列可加性)对任何一列互不相交的 An∈R(n=1,2…,),并且:式
式②
①,有:式②=③,则称μ为环R上的测度。设(Χ,φ)是一个可测空间,μ是定义在φ上的测度,则称(Χ,φ),μ)是测度空间。特别,(R1,L,m)及(R1,Lg,mg)分别称为(直线上的)L测度空间和L-S 测度空间。测度空间(Χ,φ,μ)中的测度μ 除了平移、反射不变性以及余集(因为 X可能不在S中)的性质外,具有勒贝格测度m的其他性质。由于φ是σ环,对集的极限运算封闭,所以测度空间是建立具有良好的极限性质的积分的基础。
设A是可测空间(Χ,φ)中可测集。如果有一列可测集{An},μ(An)<∞(n=1,2,…),使得:式④,则称式④
A为σ有限集。如果φ)中一切集都是σ有限的,则称(Χ,φ),μ)是σ有限的测度空间。特别,当φ是σ代数且Χ是σ有限集时,称(Χ,φ),μ)为全σ有限测度空间。通常分析数学中所用的具体的(Χ,φ),μ)大都是全σ有限测度空间。
设测度空间(Χ,φ),μ)中的φ)是σ代数,如果μ(Χ)<∞,则称(Χ,φ),μ)为全有限的测度空间。特别,当μ(Χ)=1时,称(Χ,φ),μ)为概率测度空间(概率论中用的全是这种空间)。
设A是测度空间(Χ,φ),μ)上的可测集。如果μ(A)=0,则称A为μ零集。如果(Χ,φ),μ)中任何一个μ零集的任何子集都是可测集,则称(Χ,φ), μ)为完全测度空间。例如(R1,L,m),(R1,Lg,mg)都是完全的、全σ有限的测度空间。

收敛

同L测度一样,在测度空间(Χ,φ,μ)中也有命题P在E上“几乎处处”成立的概念,它是指E中使命题P不成立的点的全体(它可能不是可测集)包含在某个μ 零集中。对于完全测度空间,命题P在E上几乎处处成立就是指使命题 P不成立的点的全体是μ零集。在不完全的测度空间上,关于μ几乎处处相等的两个可测函数ƒ和h,未必能从ƒ的可测性推出h也是可测的,只有在完全测度空间才能做到这一点。对于测度空间上的可测函数序列,常用的重要收敛概念同样有两个:一是E上可测函数列{ƒn}几乎处处收敛于可测函数ƒ,即{x│ƒn(x)→ƒ(x)}包含在某个μ零集中;另一是E上可测函数列{ ƒn}度量收敛 (或称依测度收敛)于可测函数 ƒ,即对任何 ε>0,式⑤,式⑤
上述两种收敛的关系是和L测度的情形一样。此外,在测度空间上也成立叶戈罗夫定理:设E上可测函数列{ƒn}几乎处处收敛于可测函数ƒ,并且μ(E)<∞ ,则对任何δ>0,必存在可测集Eδ嶅E,使得μ(E\Eδ)<δ,且{ƒn}在Eδ上一致收敛于ƒ。类似于L测度的情形,在测度空间上也可引入度量基本序列(或依测度基本序列),并成立相应的完备性定理。[1]

平均值
同 L积分建立过程完全一样,可以建立测度空间上的积分概念,将那里的测度m换成μ即可。L积分所具有的大部分性质对一般的测度空间上的积分也是成立的。在测度空间中也有积分平均收敛,平方平均收敛或更一般的p次平均收敛的概念以及相应的性质。

延拓值
对积分来说,采用关于集的极限运算不封闭的环上的测度是不够的,有用的是σ环上的测度。然而由于环的结构比σ环的结构要简单得多,所以在环上给出一个测度或验证环上的某个非负集函数是否是测度往往比在 σ环上要简单得多。自然就产生定义在环R上的测度是否一定能延拓成包含R的最小σ环φ(R)上的测度的问题。测度论中证明了如下重要定理:任何环上的σ 有限测度必可惟一地延拓成包含它的最小σ 环上的 σ有限测度。

出版信息


详细信息
作者:霍尔姆斯
出版社: 世界图书出版公司
出版年: 2007-2
页数: 304
定价: 39.00 元
装帧: 平装
ISBN: 9787506282741

英文简介
My main purpose in this book is to present a unified treatment of that part of measure theory which in recent years has shown itself to be most useful for its applications in modern analysis. If I have accomplished my purpose, then the book should be found usable both as a text for students and as a source of reference for the more advanced mathematician.
I have tried to keep to a minimum the amount of new and unusual terminology and notation. In the few places where my nomenclature differs from that in the existing literature of measure theory, I was motivated by an attempt to harmonize with the usage of other parts of mathematics. There are, for instance, sound algebraic reasons for using the terms "lattice" and "ring" for certain classes of sets--reasons which are more cogent than the similarities that caused Hausdorff to use "ring" and "field."




回复

使用道具 举报

高级模式
B Color Image Link Quote Code Smilies

本版积分规则

回到天堂

GMT+8, 2024-12-22 02:58 , Processed in 0.200109 second(s), 21 queries .

Powered by Discuz! X3.4

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表